Three coins are tossed once. Find the probability of getting atleast $2$ heads.
When three coins are tossed once, the sample space is given by $S =\{ HHH , HHT , HTH , THH , HTT , THT , TTH , TTT \}$
$\therefore$ Accordingly, $n ( S )=8$
It is known that the probability of an event $A$ is given by
$P ( A )=\frac{\text { Number of outcomes favourable to } A }{\text { Total number of possible outcomes }}=\frac{n( A )}{n( S )}$
Let $D$ be the event of the occurrence of at least $2$ heads.
Accordingly, $D =\{ HHH ,\, HHT \,, HTH \,, THH \}$
$\therefore P(D)=\frac{n(D)}{n(S)}=\frac{4}{8}=\frac{1}{2}$
The sum of two positive numbers is $100$. The probability that their product is greater than $1000$ is
Two dice are thrown simultaneously. What is the probability of obtaining a multiple of $2$ on one of them and a multiple of $3$ on the other
Three letters are dictated to three persons and an envelope is addressed to each of them, the letters are inserted into the envelopes at random so that each envelope contains exactly one letter. Find the probability that at least one letter is in its proper envelope.
The probability of a sure event is
The probability that a leap year selected randomly will have $53$ Sundays is